Prostate brachytherapy

Canberra Prostate Support Group July 2011

Prostate Brachytherapy

- Why brachytherapy?
- How do we do it?
- What are the results?

– Ongoing Issues

Why brachytherapy?

- Radiation falls off with the inverse square of distance
- Anatomically the bladder and rectum are close to the prostate and limit dose
- Highest dose is required for larger lumps of tumour, and lower doses at the periphery
- As stage increases the risk of tumour spread outside the prostate increases

Staging determines which Treatment is Appropriate- TNM stage

- Stage 1- Ca confined to prostate
- Stage 2a- less than 1/2 one side
- Stage 2b- more than 1/2 one side
- Stage 2c- both sides of prostate
- Stage 3a- outside capsule
- Stage 3b- into seminal vesicles
- Stage 4a- into other organs
- N1-into lymph nodes,
- M1 distant spread

Risk grouping

- D'Amico Criteria (USA)
- Low risk
- PSA <10, Gleason <7, Stage <T2c
- Intermediate Risk
- 1 risk factor
- PSA 10-15, Gleason >7, Stage > T2c
- High Risk
- > 2 risk factors and All PSA
 >15

- <u>NCCN Criteria (British)</u> Low Risk
- PSA <10, Gleason <7, Clinical Stage <T2c
- Intermediate Risk
- PSA 10-20, Gleason > 7, Stage >T2c
- High Risk
- >2 factors and all PSA > 20
- ٠

Rationale for HDR Prostate brachytherapy

- Dose escalation improves outcome in int risk and high risk CaP (Pollack, Zelefsky, Dearneley)
- Ultimate conformality in dose escalation
- Acceptable toxicity, reduces linac time
- Large dose/fraction radiobiologically better
- Shorter treatment time

Dose escalation

- High dose (dose escalated) EBRTconformal/IMRT
- EBRT with brachytherapy boost
- Brachytherapy with intraprostatic boost

BED for HDR CaP treatment

	BED(10)	BED(1.5)
86.4Gy/48#	102	190
50.4Gy/28# +	59.5	111
10Gy x 2	100	264
6Gy x 3	88.5	201
5Gy x 4	89.5	198
8.5Gy x 2	91	224
9.5Gy x 4	74	279

How do we do it?

Brachytherapy Eligibility

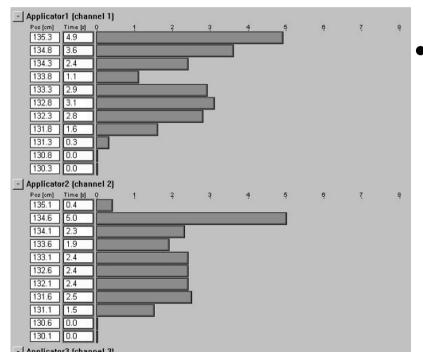
- Is it a Practical Treatment?
- Consent
- Pubic arch acceptable
- Able to hyperflex hips
- Life expectancy > 10 yrs
- Hip replacements (poor CT visualisation, req MR)
- Obesity
- Is Patient at Increased Risk of Complications?
- Anticoagulation
- TURP (size of TURP defect)
- AUA < 12, Flow rate > 12 (catheter risk)
- Chronic prostatitis

Preop

- Volume study –awake patient, bowel prep
- prostate volume, (ellipsoid + calculated)
- correlation with CT and MR volume QA
- echogenicity Ca
- Pubic arch
- Anaesthetic assessment

Intraop

- Patient in stirrups
- Insertion of catheters –inder Xray and ultrasound guidance
- CT planning scan postop
- Bladder irrigation until no bleeding
- Treatment day of procedure and next day x 2
- Implant removed under sedation
- Catheter remains until bleeding settled
- Discharge home once passed urine and bowel motion


Post op

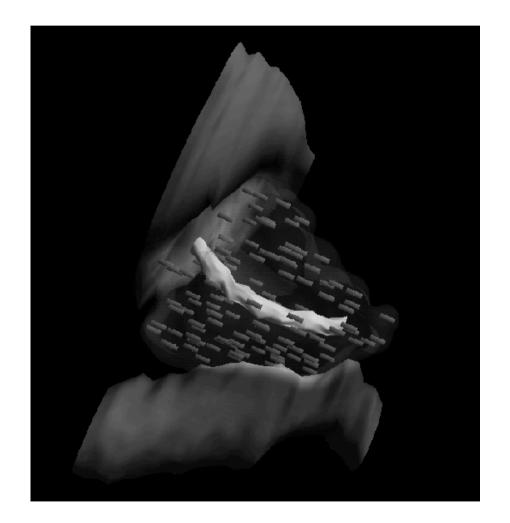
- Patient is not radioactive
- Low fibre diet to avoid bowel motions
- Pressure point cares
- Pain relief-endone
- No fluid in ends of catheters
- Treatments –replan before each
- Catheters removed under sedation
- Patient can be discharged once voided
- Country patients bladder obstruction risk
- Followed by 46Gy EBRT

Post implant care

- Flomaxtra 0.4mg 1 month
- NSAID for 5-10 days
- Simple analgesia prn
- Norfloxacin 5 days (10 if diabetic)
- Hormones-continue if high risk
- Ural for dysuria (NSAID)
- Cranberry juice/tomatoes/orange juice acidity can exacerbate dysuria

HDR treatment

 The radiation distribution and dose is determined by which dwell positions the source stops at and the length of time it "dwells" there


Acute toxicity HDR brachytherapy

- Periprocedural
- Pain, bleeding, urinary retention(10%)
- EBRT component
- Proctitis rare, dysuria, frequency, urgency
- Acute post RT symptoms
- Rectal symptoms settle early
- Uruinary symptoms take 6-12 months to settle

Long Term

- Stricture- 3-15%
- Impotence-
- Perineal nerve function
- Dysuria
- Bowels

Results

Results of treatment

- Warning:
- Problems with interpreting the data
 - Not all patient groups are equal
 - Differences in reporting data
 - No consensus on reporting dose

HDR Treatment Outcomes

Study	No.	Median PSA	Median Fup	bNED(5)
Mate 1998 (Seattle)	104	12.9	45mo	iPSA<20:84% iPSA>20:50%
Ealau (Seattle)	104	12.9	6.3yr	OAS5 83% OAS 10 77%
Kestin	161	9.9	2.5yr	83%
Borghede 1997	50	NR	45mo	84% (18 mo)1
Galalae 2002	144	12.15 mean25.6	8yr	69%(10yr) 74% (5yr)

HDR Late Toxicity

Study	GI	GU
Mate(1998)	2% G2	6.7% urethral stricture
Kestin	No G3	4% stricture
(2000)		
Galalae	4% G3	2% G3 cystitis
(2002)	7% G2	4%G2
	10% G1	12%G1
Borhegde	8% G2 proctitis	12% G1-3
(1997)	No G3	0 urethral strictures

TABLE 40.6.18

Biochemical Outcomes after Combined High-Dose-Rate (HDR) Brachytherapy and External-Beam Radiotherapy (EBRT)

Study (Reference) Series	No. of Patients	Median Follow-Up (months)	Treatment Regimen	PSA Outcome According to Prognostic Risk Grouping
Vargas et al. (205)	560	51	Median HDR, 23 Gy	High risk with ADT, 84%
			Median EBRT, 42 Gy	High risk without ADT, 81%
Galalae et al. (200)	611	60	Seattle, 3-4 Gy \times 4	Low, 96%
			Kiel, 9 Gy \times 2	Intermediate, 88%
			Beaumont, 5.5-11 Gy \times 2	High, 69%
Demanes et al. (201)	209	87	$6 \text{ Gy} \times 4, \text{HDR}$	Low, 90%
			+ 36 Gy EBRT	Intermediate, 87%
				High, 69%
Yamada et al. (203)	105	44	5.5-6.5 Gy $ imes$ 3, HDR	Low, 100%
			+ 50.4 Gy IMRT	Intermediate, 98%
				High, 92%
Phan et al. (204)	309	59	8 Gy \times 4, HDR	Low, 98%
			39.6-45 Gy EBRT	Intermediate, 90%
				High, 78%
Hoskin et al. (205)	109	30	$8.5 \text{ Gy} \times 2$, HDR	Low, 100%
			37.5 Gy EBRT	Intermediate, 90%
			-	High, 81%
Deger et al. (204)	442	60	$10 \text{ Gy} \times 2$	Low, 80%
•			40 Gy EBRT	Intermediate, 65%
				High, 58%
Pellizon et al. (207)	119	-41	$4 \text{ Gy} \times 45, \text{HDR}$	Low risk, 78%
			45 Gy EBRT	High risk, 76%

PSA. prostate-specific antigen; ADT, androgen deprivation therapy; IMRT, intensity-modulated radiation therapy.

(HDR) Brachytherapy and External-Beam Radiotherapy Median Late Late No. of Follow-Up Genitourinary Gastrointestinal Study (Reference) Series Patients Toxicity Toxicity (years) 8 Grade 2, 7% Galalac et al. (200) 144 Grade 2, 4% Grade 3, 2% Grade 3, 4% Incontinence, 6% (8 of 9 had TURP before or after HDR) Grade 3, 9% (urethral strictures) Deger et al. (202) 4425Urinary incontinence, 2% Grade 4, 1% Grade 3, 8% (urethral strictures) Martinez et al. (211) 2074.4Grade 3, 0.5% Grade 4, 0 Grade 4, 0.5% Pellizon et al. (207) 1193.4Grade $\leq 2, 4.6\%$ Grade $\leq 2, 12\%$ Grade 3-4, 0% Grade 3-4, 0 Grade 1-2, 7% Yamada et al. (203) 105Grade 2, 2% 4 Grade 3, 2% (urethral strictures) Grade 3-4, 0% Grade 4, 0 Phan et al. (204) Grade 2, 15% Grade 1-2, 4% 3095Grade 4, <1% Grade 3, 4% (urethral strictures) Demanes et al. (201) 2097.25Grade 2, 8% Grade 3, 7% (urethral strictures) Grade 1-2, 2% Grade 3-4, 0 Grade 4, 1%

Late Toxicity Outcomes after Combined High-Dose-Rate

TURP, transurethral resection of the prostate.

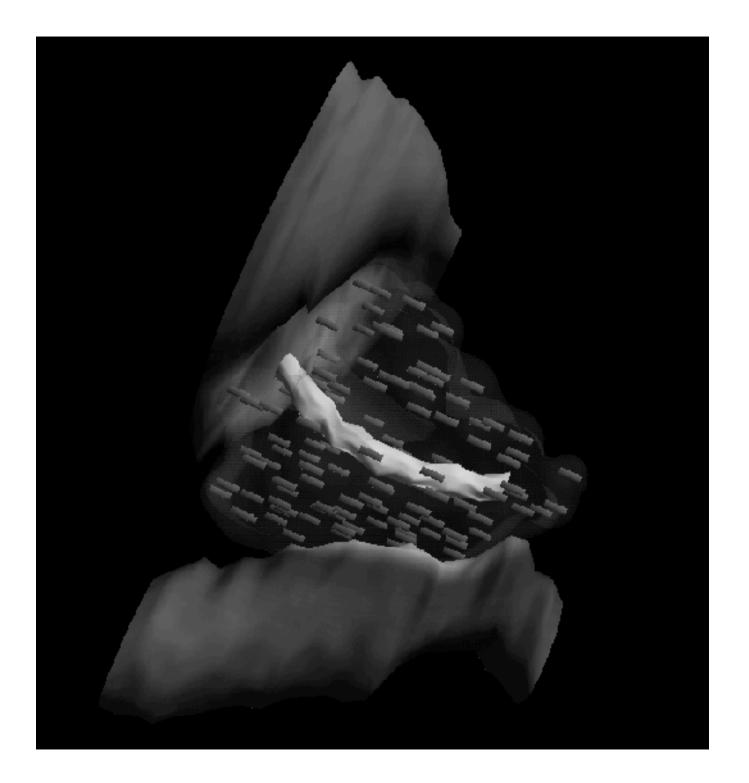
TABLE 40.6.19

LDR brachytherapy

- I-125 iodine seeds or Pd-103 palladium
- Theoretically Pd better as shorter half-life-no proven benefit (t_{1/2}64.2d vs 17d)
- Implant technique very important as dosimetry "fixed" by seed position
- Controversy re dosimetry on day 1 or day 30
- 10% of patients have increased swelling at day 30 leading to poorer implant dosimetry
- Discharge same day after catheter removed
- 10% reinsertion of catheter

Study (Reference)	No. of Patients	Median Follow-Up (years)	Treatment	5-Year Biochemical Outcome According to Risk Group	Comments
Stock et al. (169)	1,377	4.2	MT/CMT	Low, 94% Intermediate, 89.5% High, 78%	Interactive real-time planning
Zelefsky et al. (153)	2,693	5.2	МТ	Low, 82% Intermediate, 70% High, 48%	D90 ≥130 Gy 8 year PSA control, – 93% D90 <130 Gy 8-year PSA control, – 76%
Guedea et al. (170)	1,050	2.5	МΤ	Low, 93% Intermediate, 88% High, 80%	
Khaksar et al. (171)	300	4	MT	Low, 96% Intermediate, 89% High, 93%	_
Zelefsky et al. (172)	367	5.3	МТ	Low, 96% Intermediate, 89%	Real-time intraoperative planned implants
Sylvester et al. (173)	232	9.4	СМТ	Low, 86% Intermediate, 80% Unfavorable, 68%	_
Potters et al. (155)	1,449	7	MT/CMT	Low, 89% Intermediate, 78% Unfavorable, 63%	_

MT, monotherapy; CMT, combined-modality therapy (implant + external beam); PSA, prostate-specific antigen.


TABLE 40.6.17	Late Toxicity Ou	Late Toxicity Outcomes after Prostate Brachytherapy			
Study (Reference)	No. of Patients	Median Follow-Up (years)	Genitourinary	Gastrointestinal	
Stock et al. (169)	325 Incontinence, 1%	7	Grade 3, 2% (urethral stricture)	Grade ≤2, 24% Grade 3-4, 0%	
Waterman and Dicker	98	3		Grade 2, 10%	
(188) Merrick et al. (190)	1,186	4.3	Grade 3, 3.6% Urethral stricture		
(190) Gelblum et al. (190,191)	825	4	Grade 3, 4.7% 17% post TURP developed incontinence	Grade 1, 9% Grade 2, 6.6% Grade 3, 0.5%	
Bottomley et al.	667	2.5	Acute retention, 14.5% Late retention, 1%	Grade 4, <1%	
Lee et al. (209)	138	4	Urethritis @ 6 months, 13.5% Urethritis @ 24 months, 2.5% Late \geq grade 3 GI/GU, 15%		
(RTOG 0019)		3.5	(combined-modality therapy)	Diarrhea, 7.3%	
Shah et al. (159)	135	5.5		Urgency, 6.5% Bleeding, 7.3%	
Keyes et al. (186)	805	3.3	AUR: IPSS 0-5, 8% IPSS 10-15, 15%		
Albert et al. (198)	201	2.8	IPSS >16, 21% Radiation-cystitis Monotherapy, 0% Combined-modality	Grade 3 Monotherapy, 8% Combined-modality	
Zelefsky et al. (172)	367	5.2	therapy, 5% Grade 2, 19% Grade 3, 4%	therapy, 30% Grade 2, 7% Grade 3, 1%	

LDR brachytherapy-toxicity

- Dysuria peaks at 6 weeks, gone in 75% by 3 months,95% gone by 6 months.
- 3% catheter dependence at 12 months
- Half of these removed over next 2 years, remaining ongoing intermittent catheterisation
- PSA bounce-up to 2 years post implant
- Prostatitis-increased dysuria and frequency, mostly sterile Rx NSAID, trial cipro fro 1/12

Ongoing Issues - Prediction of Stage

- Staging System-Risk Grouping
- Biopsies do not predict disease extent well
- Radiological tests do not adequately
 predict micrometastatic disease

